互动壁的出现证明了一种建筑学新形式,它动感十足,互动性好。这一技术把仿生鳍条结构的优势和Festo自动化尖端技术结合起来。互动壁可以按照预先设好的动作程序运转,也可以与游客进行现场互动。它能实时把参展游客的举止转化成动作、光线和音乐。 InteractiveWall – a trade fair system reacts to visitors
InteractiveWall demonstrates a new form of architecture that is dynamic and interactive. It combines the advantages of the bionic Fin Ray structure with state-of-the-art automation technology from Festo. InteractiveWall can either follow a predetermined sequence of movements or interact with people in front of it. It transforms the behaviour of trade fair visitors into motion, light and music in real time.
气动装置的“流体肌肉”是一个全新的气动驱动器,由Festo公司开发研制。它的仿生肌主要是一个中空的橡胶柱体,内置芳族聚酰胺纤维。如果流体肌肉中充满空气,它的直径扩大、长度减小,从而进行流动的弹性运动。“流体肌肉”的应用使得运动过程不仅在动作、速度和强度上与人体运动相似,而且在灵敏度上也与人体运动相似。“流体肌肉”产生的力是相同体积气缸的七倍。“流体肌肉”坚固耐用,即使是在沙滩或尘埃等极端环境中都可以使用。The pneumatic “fluidic muscle”, a completely new kind of pneumatic drive, is a development by Festo.
The bionic muscles consist mainly of a hollow elastomer cylinder embedded with aramid fibres. When the fluidic muscle fills with air, it increases in diameter and contracts in length, enabling a fluid, elastic movement.
The use of the fluidic muscle enables motion sequences which approach human movement not only in terms of kinematics, speed and strength, but also sensitivity.
The fluidic muscle can exert ten times the force of a comparably sized cylinder, is very sturdy, and can even be used under extreme conditions such as in sand or dust.
气动装置的“流体肌肉”是一个全新的气动驱动器,由Festo公司开发研制。它的仿生肌主要是一个中空的橡胶柱体,内置芳族聚酰胺纤维。如果流体肌肉中充满空气,它的直径扩大、长度减小,从而进行流动的弹性运动。“流体肌肉”的应用使得运动过程不仅在动作、速度和强度上与人体运动相似,而且在灵敏度上也与人体运动相似。“流体肌肉”产生的力是相同体积气缸的七倍。“流体肌肉”坚固耐用,即使是在沙滩或尘埃等极端环境中都可以使用。The pneumatic “fluidic muscle”, a completely new kind of pneumatic drive, is a development by Festo.
The bionic muscles consist mainly of a hollow elastomer cylinder embedded with aramid fibres. When the fluidic muscle fills with air, it increases in diameter and contracts in length, enabling a fluid, elastic movement.
The use of the fluidic muscle enables motion sequences which approach human movement not only in terms of kinematics, speed and strength, but also sensitivity.
The fluidic muscle can exert ten times the force of a comparably sized cylinder, is very sturdy, and can even be used under extreme conditions such as in sand or dust.
鳍条效应也适用于自动化最基本的实际应用中。使用Festo的仿生材料分类闸,以Festo的流体肌肉为致动器,一步程序就可以把材料系统地分成七部分。The Fin Ray Effect can also be used in basic practical applications in automation. Seven parts can be systematically sorted in a single procedure with the bionic material sorting gate from Festo, with Festo fluidic muscles as actuators.
机器人已被证明能够在一个多种应用多种益处。 Manufacturers introducing robots to their production processes have typically seen a significant transformation in their productivity and efficiency.机器人制造商介绍他们的生产工序通常发生在他们的生产力和效率的重大转变。
The International Federation of Robotics recently undertook a survey that identified the top 10 reasons that manufacturers invest in robots.在国际机器人联合会最近进行了一个确定的10大理由机器人制造商在投资调查。 ABB has now built on that survey and developed a Guide to help you better understand the "10 good reasons for investing in robots" with real-life case studies from companies and integrators who exemplify each one of the reasons. ABB公司现已建立在该项调查,并制定了指南,帮助您更好地了解“10机器人的投资与现实生活的公司和系统集成体现每个谁的原因之一案例研究”的理由。
The 10 good reasons 10个很好的理由
They range from reducing operating costs, improving product quality and consistency, as well as the quality of work for employees, to increasing production output rates, product manufacturing flexibility and reducing material waste and increasing yield.它们的范围从降低运营成本,提高产品质量和一致性,以及对员工的工作质量,以期提高生产产出率,产品的制造灵活性和减少材料浪费和增加产量。
放飞风筝需要娴熟的技能,Festo公司凭借其“空中自动化风筝”首次证实运用机电学原理可以实现风筝全程自动化控制。这是其在运用流动气流核心技术上的新发展。
“空中自动风筝”包含两个分别用机电控制器操纵的双线风筝。运用伺服电机和人造风,这两个风筝就可以实现室内自动化操作。各风筝线通过快速开关阀连接到Festo公司生产的DMSP射流臂,它可以缩短风筝线的长度。如果风筝断线,通过射流臂收缩风筝线就可以使其平稳飞行。It takes a fair amount of skill to fly a kite. With its Sky_liner project, Festo has become the first company to demonstrate that fully automated control can be achieved with the aid of mechatronics, thus linking a new development to its core competency of automation using moving air.
Sky_liner consists of two two-line kites, each of which is controlled using a mechatronic control unit. The two kites are operated automatically indoors, using servo motors and artificial wind. Each line is connected via fast-switching valves to a fluidic muscle DMSP from Festo, which shortens the line and counterbalances the kite by contracting when the kite breaks away.
It takes a fair amount of skill to fly a kite. With its Sky_liner project, Festo has become the first company to demonstrate that fully automated control can be achieved with the aid of mechatronics, thus linking a new development to its core competency of automation using moving air.
Sky_liner consists of two two-line kites, each of which is controlled using a mechatronic control unit. The two kites are operated automatically indoors, using servo motors and artificial wind. Each line is connected via fast-switching valves to a fluidic muscle DMSP from Festo, which shortens the line and counterbalances the kite by contracting when the kite breaks away.
玩溜溜球需要技巧和耐心。通过YoYo系统,Festo证明了在机电元件的帮助下,加上Festo利用流动空气的核心自动化竞争力,能实现全自动控制。 YoYo由3个独立的溜溜球组成,其规格也各不相同,分别为16, 20 和24。所有溜溜球均采取不同种类的麦克斯韦转轮,每一个均由气动肌腱驱动。 Playing with a yo-yo takes skill and patience. With its YoYo, Festo has demonstrated that fully automated control can be achieved with the aid of mechatronics, thus linking with Festo core competency of automation to using moving air.
The YoYo consists of three independent yo-yos of different sizes, 16, 20 and 24. All the yo-yos take the form of Maxwell wheels of various kinds, with each one being driven by a pneumatic muscle.
以自然界的鳐鱼为模板的“空中鳐鱼”是一种由远程遥控的氦气气囊和羽翼振动产生驱动力组成的混合体。它轻便的设计借助氦气的浮力让它可以在广阔的空中“遨游”,这种方法与水中的鳐鱼相似。
“空中鳐鱼”的驱动力由羽翼振动产生。利用射线效应并基于与四周有连接的拱侧翼交替推拉运动的原理,私伺服控制的羽翼可以上下移动。当一侧受到压力时,它几何形的结构会自动向受力的反方向卷曲。一个伺服驱动两片侧翼交替地纵向移动,驱使羽翼上下运动。Air_ray, modelled on the manta ray, is a remote-controlled hybrid construction consisting of a helium-filled ballonet and a beating wing drive. Its lightweight design enables it to “swim” in the sea of air using the lift from the helium in a similar way to the manta ray in water.
Propulsion is achieved by a beating wing drive. The servo drive-controlled wing, which can move up and down, utilises the Fin Ray Effect and is based on alternate pulling and pushing flanks connected via frames. When pressure is exerted on one edge, the geometrical structure automatically curves against the direction of the influencing force. A servo drive pulls the two flanks alternately in longitudinal direction, thus moving the wing up and down.